Optimal convex shapes for concave functionals

نویسندگان

  • Dorin Bucur
  • Ilaria Fragalà
  • Jimmy Lamboley
  • Dorin BUCUR
  • Ilaria FRAGALÀ
  • Jimmy LAMBOLEY
چکیده

Motivated by a long-standing conjecture of Pólya and Szegö about the Newtonian capacity of convex bodies, we discuss the role of concavity inequalities in shape optimization, and we provide several counterexamples to the Blaschke-concavity of variational functionals, including capacity. We then introduce a new algebraic structure on convex bodies, which allows to obtain global concavity and indecomposability results, and we discuss their application to isoperimetriclike inequalities. As a byproduct of this approach we also obtain a quantitative version of the Kneser-Süss inequality. Finally, for a large class of functionals involving Dirichlet energies and the surface measure, we perform a local analysis of strictly convex portions of the boundary via second order shape derivatives. This allows in particular to exclude the presence of smooth regions with positive Gauss curvature in an optimal shape for Pólya-Szegö problem. 2000MSC : 49Q10, 31A15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulation of Laminar Free Convection Heat Transfer around Isothermal Concave and Convex Body Shapes

In the present research, free convection heat transfer from isothermal concave and convex body shapes is studied numerically. The body shapes investigated here, are bi-sphere, cylinder, prolate and cylinder with hemispherical ends; besides, they have the same height over width (H/D = 2). A Numerical simulation is implemented to obtain heat transfer and fluid flow from all of the geometries in a...

متن کامل

Turnpike Theorems for Convex Problems with Undiscounted Integral Functionals

In this paper the turnpike property is established for convex optimal control problems, involving undiscounted utility function and differential inclusions defined by multi-valued mapping having convex graph. Utility function is concave but not necessarily strictly concave. The turnpike theorem is proved under the main assumption that over any given line segment, either multi-valued mapping is ...

متن کامل

Polygons as Optimal Shapes with Convexity Constraint

In this paper, we focus on the following general shape optimization problem: min{J(Ω), Ω convex, Ω ∈ Sad}, where Sad is a set of 2-dimensional admissible shapes and J : Sad → R is a shape functional. Using a specific parameterization of the set of convex domains, we derive some extremality conditions (first and second order) for this kind of problem. Moreover, we use these optimality conditions...

متن کامل

Maximally dense packings of two-dimensional convex and concave noncircular particles.

Dense packings of hard particles have important applications in many fields, including condensed matter physics, discrete geometry, and cell biology. In this paper, we employ a stochastic search implementation of the Torquato-Jiao adaptive-shrinking-cell (ASC) optimization scheme [Nature (London) 460, 876 (2009)] to find maximally dense particle packings in d-dimensional Euclidean space R(d). W...

متن کامل

Short Note on Inf-Convolution Preserving the Fatou Property

We model agents’ preferences by cash-invariant concave functionals defined on L∞, and formulate the optimal risk allocation problem as their infimal-convolution. We study the case of agents whose choice functionals are law-invariant with respect to different probability measures and show how, in this case, the value function preserves a desirable dual representation (equivalent to the Fatou pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010